博客
关于我
紫书 习题 11-2 UVa 1001 (Floyd)
阅读量:682 次
发布时间:2019-03-17

本文共 895 字,大约阅读时间需要 2 分钟。

这篇文章展现了一个程序员在解决实际问题时的思考过程。以下是优化后的内容:


这篇文章展示了一个程序员在解决实际问题时的思考过程。其中,作者描述了一种在边上做文章的方法,并通过Floyd算法优化了性能,解决了特定的最短路径问题。

问题分析

  • 问题背景:题目要求在一个包含多个点的空间中找到路径之间的最短距离。每个点都有一个半径,路径的距离计算方式为两点之间的欧几里得距离减去两边的半径(如果结果为负数,则视为0)。

  • 算法选择:考虑到数据范围较小(n=112),且需要快速找到最短路径,作者选择了Floyd算法(或-taking算法)。这种算法能够在O(n³)时间复杂度内解决问题,适合处理小规模的最短路径问题。

  • 解决方案

  • 输入处理

    • 首先读取输入数据,初始化点的坐标和半径。
    • 点之间的距离计算方式为:sqrt((x2-x1)^2 + (y2-y1)^2 + (z2-z1)^2) - r1 - r2(若为负则取0)。
  • Floyd算法实现

    • 初始化距离矩阵,kofn算法通过三重循环优化距离矩阵,逐步更新最短路径。
    • 每条路径的计算过程中,自动调整结果为非负数,符合题意的路径距离要求。
  • 优化考虑

    • 程序采用了直观的Floyd算法实现,虽然在大规模数据下不如Dijkstra效率高,但对于小规模数据(如n=112),能够满足要求。
    • 代码注重易读性,使用标准库和结构化进行数据管理,提升了开发效率。
  • 代码实现

    • 代码结构清晰:使用多个标准库(如scoll、vector、cmath)进行程序设计。
    • 算法实现:首先计算初始距离矩阵,然后通过三阶段更新矩阵,逐步逼近所有节点之间的最短路径。
    • 性能考虑:在保证正确性的同时,代码注重运行效率,通过预先排序和优化路径更新。

    依据分析

    • 问题的特殊要求(如边定义和半径处理)决定了算法的选择,Floyd算法的适用性和效率是其主要优势。
    • 代码的可读性和简洁性使其易于维护和复用,同时标准库的使用使得程序结构更加规范。

    通过该方法,作者成功地解决了特定最短路径问题,并展示了程序员在实际应用中思考和解决问题的过程。这种解决方案兼具正确性和效率,能够处理题目中的特殊需求。

    转载地址:http://gkyhz.baihongyu.com/

    你可能感兴趣的文章
    NetBeans之改变难看的JSP脚本标签的背景色...
    查看>>
    netbeans生成的maven工程没有web.xml文件 如何新建
    查看>>
    netcat的端口转发功能的实现
    查看>>
    NetCore 上传,断点续传,可支持流上传
    查看>>
    Netcraft报告: let's encrypt和Comodo发布成千上万的网络钓鱼证书
    查看>>
    Netem功能
    查看>>
    netfilter应用场景
    查看>>
    Netflix:当你按下“播放”的时候发生了什么?
    查看>>
    Netflix推荐系统:从评分预测到消费者法则
    查看>>
    netframework 4.0内置处理JSON对象
    查看>>
    Netgear WN604 downloadFile.php 信息泄露漏洞复现(CVE-2024-6646)
    查看>>
    Netgear wndr3700v2 路由器刷OpenWrt打造全能服务器(十一)备份
    查看>>
    netlink2.6.32内核实现源码
    查看>>
    netmiko 自动判断设备类型python_Python netmiko模块的使用
    查看>>
    NetMizer 日志管理系统 多处前台RCE漏洞复现
    查看>>
    NetMizer-日志管理系统 dologin.php SQL注入漏洞复现(XVE-2024-37672)
    查看>>
    Netpas:不一样的SD-WAN+ 保障网络通讯品质
    查看>>
    netron工具简单使用
    查看>>
    NetScaler MPX Gateway Configuration
    查看>>
    NetScaler的常用配置
    查看>>